La Relativité générale est la
théorie énoncée par Einstein, de l’espace-temps. Elle présente sous un
jour complètement nouveau la question de la gravitation : La gravitation
n’est rien d’autre qu’une courbure de l’espace-temps.
La mécanique quantique
travaillait dans un espace absolu, plat qui est celui de la relativité
restreinte. On arrive ici, au niveau macroscopique, a un tout autre
espace : à 4 dimensions).
a. La gravitation.
Newton découvre la gravitation
comme une force agissant à distance entre tous les objets massifs (corps
terrestres ou célestes) en raison de leur masse et en raison inverse du carré
des distances qui les séparent.
F = M.M’ / d²
Cela veut dire que la force
correspond à une accélération de la masse. P (qui est une force
exprimée en Newton) = m.g. C’est un cas particulier d’un phénomène plus
général, puisque g n’est qu’une forme d’accélération particulière (celle de la pesanteur terrestre). F = m.a.
Du coup, il y a égalité
entre la masse grave (M ou M’) détectée par son poids (P) et la masse
inerte ou inertielle (m) détectée par sa résistance au mouvement (inertie).
Remarque. Au passage, il
faut lever une erreur courante. Supposons qu’on substitue à la Terre une boule
de pétanque, voire un grain de sable, leur mouvement autour du soleil en sera-t-il changé ?
Non ! Le mouvement d’un corps dans un champ de gravitation ne dépend
pas de sa masse. En effet, la masse (de la Terre) qui évolue dans un champ de gravitation (du soleil) subit une force d'attraction gravitationnelle mais n'influe en rien sur ce champ. Le champ de gravitation ne dépend en rien de la masse qui s'y trouve prise.
C’est ce que veut dire que tous les corps tombent à la
même vitesse dans le vide, quelle que soit leur masse. La gravitation, c’est
seulement qu’ils tombent. On va voir que c’est justement cette indépendance
du mouvement par rapport à la masse qui est à l’origine de la théorie de la
Relativité générale.
[On prendra soin de distinguer champ gravitationnel et champ de pesanteur. Ils ne sont pas rigoureusement identiques. Ce dernier est créé par la modification que la masse de la Terre fait subir à l'espace dans son voisinage (champ gravitationnel) mais est influencé par le fait que, la Terre tournant sur elle-même, les objets qui se trouvent dans son champ de gravitation ne subissent pas une attraction rigoureusement dirigée vers le centre de la Terre. (à cause de la force centrifuge]
Le problème de ta théorie newtonienne, c’est cette mystérieuse action à distance de la force.
C’est aussi qu’il faut imaginer un éther pour rendre compte de la
propagation de l’onde lumineuse dans le vide, c’est-à-dire pour permettre aux
équations de Maxwell sur l’électromagnétisme, de fonctionner. C’est enfin un
bug dans le calcul du mouvement de Mercure dont on ne sait pas rendre compte de
l’avance du périhélie.
b. Gravitation
et accélération
Newton avait reconnu l’égalité entre masse inerte
et masse grave, (principe d’équivalence faible). Einstein va aller plus
loin. On ne peut pas faire la différence
entre les deux (principe d’équivalence forte).
Le satellite Microscope du CNES qui a été lancé le 22 avril 2016 devait, en autres choses, tester ce principe d'équivalence avec une précision dans la mesure de 10^-15, donc bien meilleure que celle possible sur Terre (où elle est tout de même de 10^-13). Deux masses, l'une de titane, l'autre de platine, placées dans le satellite, devaient suivre la même chute libre et rester immobiles l'une par rapport à l'autre lors d'une même accélération. Le 4 décembre 2017 a vu la publication du résultat de cette expérience : le principe d'équivalence en ressort conforté ... Pour le moment, car l'expérience se poursuit à des niveaux de précision toujours plus grands.
Le satellite Microscope du CNES qui a été lancé le 22 avril 2016 devait, en autres choses, tester ce principe d'équivalence avec une précision dans la mesure de 10^-15, donc bien meilleure que celle possible sur Terre (où elle est tout de même de 10^-13). Deux masses, l'une de titane, l'autre de platine, placées dans le satellite, devaient suivre la même chute libre et rester immobiles l'une par rapport à l'autre lors d'une même accélération. Le 4 décembre 2017 a vu la publication du résultat de cette expérience : le principe d'équivalence en ressort conforté ... Pour le moment, car l'expérience se poursuit à des niveaux de précision toujours plus grands.
Qu’un individu, enfermé dans une cabine sans hublot, posée au sol,
immobile, lance une boule, celle-ci suit une trajectoire parabolique avant de
se trouver au sol. Qu’un autre individu, dans une cabine également sans hublot,
mais propulsée dans l’espace, vers le haut, avec une accélération (a)
égale à g, lance une boule, elle suivra exactement le même trajet. Aucun
des deux ne pourra dire s’il est en mouvement ou immobile et les expériences
réalisées dans les deux cabines donneront exactement les mêmes résultats. Un
champ dirigé vers le bas ou une accélération dirigée vers le haut aboutissent
au même résultat. Référentiel accéléré ou champ de gravitation, c’est la même
chose.
Précision : la masse inertielle (mi) d’un
corps définit, pour un corps, sa résistance au changement de son mouvement.
S’il est au repos, elle tend à ce qu’il y reste. S’il est en mouvement, elle
tend à ce qu’il conserve sa vitesse, sa direction et son sens. La masse
inertielle s’oppose à l’accélération.
La masse gravitationnelle (mg) est un
coefficient mesurant la relation d’un corps à un champ gravitationnel qu’il
crée et/ou subit.
Dans la chute libre, dire que tous les corps
(quelle que soit leur masse) tombent à la même vitesse (en réalité : avec la même accélération), c’est dire que la
résistance au changement (inertie) est plus grande pour une masse grave
plus importante (elle tend à s'opposer à l'accélération) et moindre pour une masse grave moindre (elle s'y oppose moins). La différence de poids
entre les deux corps en chute libre est, du coup, annulée. C’est donc dire que
les deux masses (inertielle et grave) sont égales.
On montre d’ailleurs expérimentalement que dans a
= (mg / mi)g, le rapport (mg / mi)
est bien égal à 1, de sorte que a = g. (a est le vecteur accélération et g le vecteur gravité)
Ou encore : dans la chute libre, l’accélération de la
pesanteur me fait perdre mon poids. Tant que je tombe je ne sens plus en effet
la "force" de gravitation (celle-ci ne m’est sensible que par la force qu’exerce
le sol sur moi pour m’empêcher de tomber !). De fait, la force d’inertie
d’entraînement fie = - mi.a.
compense exactement la force gravitationnelle
p = mg.g.
[Qu'est-ce que la chute libre dans la théorie de la relativité générale ? C'est, pour un objet, le fait de décrire simplement une géodésique de l'espace-temps déformé par la présence d'une masse (ou d'une énergie): la géodésique (le trajet parcouru sur un espace courbe) qui s'apparente le plus à une ligne droite, dans cet espace courbe. Comme dans un champ de gravitation le mouvement d'un corps ne dépend pas (on l'a vu) de sa masse mais des propriétés du champ, deux corps de masses différentes (planète, boule de pétanque, grain de sable) suivront exactement la même géodésique (= tomberont à la même vitesse)].[Il faut comprendre qu'il n'y a pas, à proprement parler, d'attraction ; le corps qui se déplace le fait simplement en suivant la courbe infligée à l'espace par la proximité d'une masse ou d'une source d'énergie].
Masse inertielle et masse gravitationnelles sont bien deux choses distinctes, mais égales. Cette équivalence est de l'ordre du fait, pas de la logique. Si elles ne l'étaient pas, nous serions dans un autre monde, gouverné par une autre physique.
Masse inertielle et masse gravitationnelles sont bien deux choses distinctes, mais égales. Cette équivalence est de l'ordre du fait, pas de la logique. Si elles ne l'étaient pas, nous serions dans un autre monde, gouverné par une autre physique.
[Remarque : Cette découverte est
essentielle car elle montre qu’il existe donc un référentiel, distinct du référentiel inertiel galiléen,
où les effets de la gravitation disparaissent : c’est le référentiel en
chute libre. Ce qui s’y passe est indépendant de l’état de mouvement du
référentiel.
Le principe d'inertie (première loi de Newton) qui énonce qu'un corps isolé de toute action extérieure est soit au repos soit en mouvement rectiligne uniforme (c'est-à-dire non accéléré ou freiné) n'est vrai que dans des référentiels inertiels (ou galiléens), c'est-à-dire dans des référentiels en translation rectiligne et uniforme (sans accélération) les uns par rapport aux autres. Or, il n'est pas possible de construire des référentiels non accélérés, puisqu'ils sont soumis à l'accélération de la pesanteur. Il faut donc effacer l'effet gravitationnel. C'est ce que permet la chute libre. Quand je tombe, mon corps ne pèse plus ! Les référentiels qui éliminent la gravitation (chute libre) sont aussi des systèmes inertiels dans lesquels, donc, les lois de la relativité sont valables.
Ce référentiel est indispensable pour étudier, justement, les effets
de la gravitation (par exemple, sur le champ électromagnétique, etc.). Le
référentiel simple n’est plus le référentiel galiléen (celui du laboratoire),
c’est celui qui est en chute libre. Pour étudier la physique dans le
référentiel du laboratoire, je vais devoir l’étudier d’abord dans le
référentiel en chute libre puis opérer un changement de référentiel. Par
exemple, si je veux décrire le mouvement d’une géodésique dans une région
soumise à la gravité, je commence par décrire ce mouvement dans un
référentiel en chute libre.]
[Attention cependant ! Le référentiel en chute libre est opérationnel quand on travaille en présence d'un champ gravitationnel. Mais, un tel champ n'est jamais uniforme. Le référentiel en chute libre est donc local I.
Le principe d’équivalence établit donc que,
pour des positions et des vitesses initiales identiques, un grain de sable, la
Terre, une boule de pétanque décriront autour du soleil la même orbite. Ce qui
veut dire que l’accélération ne dépend pas de la masse de l’objet
accéléré.
Il résulte de cela ce qui va faire le fondement de la
théorie de la Relativité générale : le mouvement dû à l’attraction
gravitationnelle possède donc un caractère absolu dû au fait que la
masse n’intervient en rien dans la détermination de ce mouvement. Or, si ce
mouvement a un caractère absolu, cela signifie qu’on peut le décrire en
termes purement géométriques.
Einstein va donc géométriser (évidemment dans un
espace non euclidien) la gravitation. La gravité n’est plus une force,
mais une déformation géométrique de l’espace(-temps).
Cette déformation provient du « contenu » de l’univers :
matière, énergie, rayonnement. En somme, l’espace-temps dit à la matière (à
l’énergie, au rayonnement) comment se déplacer (c’est ce qu’on voit quand on
lit de gauche à droite l’équation du tenseur d’Einstein...
où le premier terme de l'équation représente la courbure de l’espace-temps)
... et la matière, l’énergie, le rayonnement disent à
l’espace-temps comment se courber (c’est ce qu’on voit quand on lit la même
formule de droite à gauche :
(le côté droit de l'équation représentant le contenu masse/énergie de l’espace-temps).
Tous les objets avancent en ligne droite à une vitesse
constante, sauf que l’espace est courbe, rempli de creux et de bosses !
S’il en est ainsi, même la lumière soumise à l’interaction
électrostatique, doit être déviée par un champ gravitationnel. On vérifie là encore que la gravitation est, pour un objet qui se déplace, sans rapport avec sa masse, puisque le photon, de masse nulle, est soumis aux effets de la gravitation. C’est ce que
prédit Einstein et qui est vérifié lors de l’éclipse solaire du 29 mai 1919 par
un effet de lentille gravitationnelle (voir plus haut) : une étoile
dont on connaît la position derrière le soleil, apparaît à côté
(Einstein en avait prédit l’angle avec juste une erreur de calcul, parce qu'il ne possédait pas encore les équations appropriées !). En fait, le passage du rayon de
lumière est dévié par la déformation de l’espace que la masse (ou plutôt la densité
qui est le rapport de la masse au volume) du soleil imprime à l’espace.
c. L’espace-temps.
a.
L’espace-temps, c’est la totalité de l’espace à tous les instants
de l’univers. On mesurera la distance (espace) d’une étoile en comptant
le nombre d’années (temps) qu’il faut à la lumière qui en émane pour
parvenir jusqu’à nous.
La notion d'année-lumière effectue la synthèse de l'espace et du temps : c, la célérité de la lumière, est une vitesse, donc un rapport espace (parcouru)/temps(mis à le parcourir). Le soleil, par exemple, est situé à 8,20 minutes (temps) lumière puisque la lumière met 8,20 minutes à nous parvenir. Ce faisant, elle a parcouru (espace) 149 000 000 km. Pourquoi ne pas le dire tout de suite ? Simplement parce que, pour calculer la distance de la Terre par rapport au Soleil, on mesure le temps que la lumière met à faire le trajet.
[En réalité, la mesure de cette distance, tentée depuis Ératosthène, 2ème s avant JC, a été réalisée avec plus ou moins de succès, principalement par des processus mathématiques (mesure des parallaxes pour les astres proches) et astronomiques (utilisation des céphéides, pour des astres plus lointains), enfin mesure du redshift pour les plus éloignés ; il n'en reste pas moins que c'est en années-lumière que s'exprime le résultat de ces mesures, comme si le calcul avait été effectué comme indiqué].
On appelle ligne d’univers
la trajectoire des objets dans l’espace-temps. Soyons précis : le
trajet suivi par un objet dans l’espace(-temps) est une géodésique. La ligne
d’univers (la trajectoire) est autre chose. Ma ligne d’univers est
constituée de la suite des événements dont le premier est ma naissance et le
dernier, ma mort. Cela n’a rien de spatial : c’est une trajectoire
temporelle. Compliquons : un objet qui se déplace dans l’espace
(géodésique) le fait aussi dans le temps (il lui en faut pour parcourir cet
espace). Il a donc aussi une ligne d’univers.
Les schémas ci-dessous, décrivent (seulement en 3 dimensions !) ces
lignes : le premier compare dans un espace plan un mouvement
uniforme (rectiligne) et un mouvement accéléré (courbe, puisque c’est un
rapport temps-espace). Cette courbure est seulement spatiale. Le second
décrit un mouvement uniforme dans l’espace temps. Le troisième un
mouvement accéléré négatif (décéléré) dans l’espace-temps. Le quatrième
un mouvement accéléré (donc en rotation) dans l’espace-temps (la spirale
s’aplatit quand l’accélération croît (moins de temps pour parcourir un espace),
s’écarte quand elle décroît (plus de temps pour parcourir un espace). Le
cinquième montre le mouvement par exemple de la Terre autour du soleil dans
l’espace temps. La flèche montante est la ligne d’univers du soleil
(la succession de ses positions dans le temps, sa trajectoire temporelle),
la spirale, la ligne d’univers de la Terre.
Qu’est-ce qui fait que l’accélération courbe
ainsi l’espace ? C’est mal poser la question. Il faut aller en sens
inverse : un objet (particule, planète, étoile, galaxie, etc.) se déplace
toujours en ligne droite. Mais, une masse (ou plutôt une densité, c’est-à-dire
un rapport masse/volume) courbe l’espace qui la sous-tend. Quand un objet parvient
à proximité de cette masse, il chute dans la cuvette puis il remonte la
cuvette: sa trajectoire s’est courbée.
Si la cuvette est suffisamment profonde et/ou si la
vitesse de déplacement de l’objet est relativement lente (elle l’est d’autant
plus que l’objet est massif), la trajectoire finit circulaire (ou elliptique), à
la manière d’une bille de roulette, l’objet n’ayant pas la vitesse suffisante
pour remonter. Plus exactement, l'objet continue à évoluer en ligne droite, c'est l'espace, c'est la droite qui se courbe. Mieux, si la masse qui déforme l’espace est
« supermassive », tout objet qui arrive dans le creux est entraîné
vers le fond sans pouvoir remonter la pente. C’est ce qui a lieu dans les trous noirs dont la lumière
elle-même ne parvient plus à s’échapper (voir plus loin).
On voit ci-dessous, comment la Lune est prise dans le creux que la masse
de la Terre imprime à l’espace. On voit même, ci-dessous, comment l’espace
lui-même tourne avec la Terre, accentuant « l’attraction » sur son
satellite. (Que la Terre tourne sur elle-même vient d’avant même sa formation,
du tourbillon des poussières qui se sont agglomérées pour la former).
La matière (la densité de matière ou d’énergie, c’est tout un puisque E = m.c²) change donc la géométrie de l’espace qui l’entoure.
_______________________________________________
De tout cela, il résulte que pour la première fois
l’univers est devenu un objet physique avec ses propriétés propres et
qu’on va pouvoir l’étudier pour lui-même. La cosmologie scientifique est
née. Bien qu’Einstein le refuse jusqu’aux années 30 quand Hubble découvre la
fuite des galaxies, l’univers peut même avoir une histoire. Pas
l’histoire des objets qui le peuplent, mais son histoire à lui. En un mot,
quand Hubble croit que les galaxies s’éloignent les unes des autres dans
l’espace, il n’y a pas encore d’univers. Il y a une fuite des objets célestes.
Lorsque Lemaître applique la relativité à cette découverte, l’univers
apparaît : c’est lui, l’espace-temps qui se dilate et fait que les
galaxies sont plus loin les unes des autres aujourd’hui par rapport à hier.
L’astrophysique, fera la théorie et rendra compte
de l’histoire des astres.
La cosmologie rendra
compte de l’histoire de l’univers.
Aucun commentaire:
Enregistrer un commentaire